数据挖掘和数据分析的区别是什么

区别:“数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识规则”。“数据分析”得出的结论是人的智力活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则。

本教程操作环境:windows10系统、Dell G3电脑。

简单说:数据挖掘就是从海量数据中找到隐藏的规则,数据分析一般要分析的目标比较明确。

主要区别:

  • “数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识规则”KDD(Knowledge Discover in Database)。

  • “数据分析”得出的结论是人的智力活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则。

  • “数据分析”得出结论的运用是人的智力活动,而“数据挖掘”发现的知识规则,可以直接应用到预测。

  • “数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。如传统的控制论建模的本质就是描述输入变量与输出变量之间的函数关系,“数据挖掘”可以通过机器学习自动建立输入与输出的函数关系,根据KDD得出的“规则”,给定一组输入参数,就可以得出一组输出量。

举个简单的例子:

  • 有一些人总是不及时向电信运营商缴钱,如何发现它们?

数据分析:通过对数据的观察,我们发现不及时缴钱人群里的贫困人口占82%。所以结论是收入低的人往往会缴费不及时。结论就需要降低资费。

数据挖掘:通过编写好的算法自行发现深层次的原因。原因可能是,家住在五环以外的人,由于环境偏远不及时缴钱。结论就需要多设立一些营业厅或者自助缴费点。

以上就是数据挖掘和数据分析的区别是什么的详细内容,更多请关注html中文网其它相关文章!

赞(0) 打赏
未经允许不得转载:html中文网首页 » 其他答疑

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

前端开发相关广告投放 更专业 更精准

联系我们

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏